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LETTER TO THE EDITOR

Car-oriented mean-field theory for traffic flow models
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‡ Mathematik/FB 11, Gerhard-Mercator-Universität Duisburg, D-47048 Duisburg, Germany

Received 13 December 1996

Abstract. We present a new analytical description of the cellular automaton model for single-
lane traffic. In contrast to previous approaches we do not use the occupation number of sites as
dynamical variable but rather the distance between consecutive cars. Therefore certain longer-
ranged correlations are taken into account and even a mean-field approach yields non-trivial
results. In fact for the model withvmax= 1 the exact solution is reproduced. Forvmax= 2 the
fundamental diagram shows a good agreement with results from simulations.

Despite a large number of publications about the cellular automaton approach to traffic flow
(see e.g. [1] and references therein) only a few of those deal with a systematic analytical
description. Most works make use of large-scale computer simulations which can be carried
out very efficiently for this class of models. Nevertheless, analytical results—exact or
approximate—may give important information relevant for a complete understanding of
those models.

The most important exact result is certainly the solution of the model forvmax= 1 [2].
This result has been obtained usingn-cluster approximation [2, 3], i.e. an improved mean-
field theory taking into account correlations betweenn neighbouring sites. Forvmax= 1 the
2-cluster approximation is exact [2]. For higher velocities then-cluster approximation for
smalln already yields very good results for the so-called fundamental diagram (flow-density
relationship) [2, 3].

In computer simulation studies there are in principle two different approaches [3] called
site-oriented and car-oriented¶. In the site-oriented approach the state of the system is
specified by storing the state of each cell which can either be empty or occupied by a single
car with velocityv = 0, 1, . . . , vmax. In the car-oriented approach, on the other hand, one
stores the velocity of each car and the distance to the next car ahead.

Since the cluster approximation corresponds to a site-oriented approach, this analogy
inspired us to investigate an analytical description based on the car-oriented approach, the so-
called car-oriented mean-field theory (COMF)+. The COMF already takes into account some
longer-ranged correlations so that one can hope that it yields at least a good approximation.

For completeness we briefly repeat the definition of the CA model for single-lane traffic
flow [5] in the following. The street is divided intoL cells of a certain length (for realistic

§ E-mail address: as@thp.uni-koeln.de
‖ E-mail address: schreck@traf3.math.uni-duisburg.de
¶ In [3] this approach has been called particle-oriented.
+ A brief account of some preliminary results has already been given in [4].
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applications 7.5 m) which can be occupied by at most one car or be empty. The cars have an
internal parameter (‘velocity’) which can take on only integer valuesv = 0, 1, 2, . . . , vmax.
The dynamics of the model are described by the following update rules for the velocities
and the motion of cars [5]. In the first step all cars with velocitiesvi < vmax are accelerated
by one velocity unit,vi → v′i = vi + 1. The following step describes the slowing down
due to other cars and prevents accidents. All cars with velocitiesv′i > di (where di is
the number of free cells in front of cari) decelerate to velocityv′′i = di . The last step
in the velocity update is a randomization effect taking into accout several aspects of the
driver’s behaviour, e.g. fluctuations in driving style, overreaction at breaking, and retarded
acceleration: every car with velocityv′′i > 0 will slow down one unit with probabilityp,

i.e. v′′i
p→ v′′′i = v′′i − 1. In the final step the car then movesv′′′i sites. These four rules,

referred to as step 1 to step 4 in the following, are applied to all cars at the same time
(parallel dynamics).

COMF for vmax = 1

We denote the probability to find at timet (exactly) n empty sites in front of a vehicle
by Pn(t). As in [2, 3] we change the order of the update steps to 2–3–4–1. This change
has to be taken into account when calculating the fluxf (c, p). It has the advantage that
after step 1 there are no cars with velocity 0, i.e. all cars have velocity 1. The time
evolution of the probabilitiesPn(t) can conveniently be expressed through the probability
g(t) (ḡ(t) = 1− g(t)) that a car moves (does not move) in the next timestep.

In order to find the time evolution of thePn(t) we first determine from which
configurations at timet a given state at timet + 1 could have been evolved under the rules
2–3–4–1. Take for instance a car—called second car in the following—which hasn > 1
free sites in front, i.e. its distance to the next car ahead (called first car in the following)
is n+ 1 sites. This configuration might have evolved from four different configurations at
time t , depending on whether (i) both cars moved in the timestept → t+1 (which happens
with probability qg(t)), (ii) both cars did not move (with probabilitypḡ(t)), (iii) only the
first car moved (with probabilitypg(t)), or (iv) only the second car moved (with probability
qḡ(t)). This means that the second car at timet had eithern free site in front (cases (i)
and (ii)), orn− 1 free sites (case (iii)), orn+ 1 free sites (case (iv)).

The special casesn = 0, 1 can be treated in a analogous fashion. In this way one
obtains the time evolution of the probabilities as

P0(t + 1) = ḡ(t)[P0(t)+ qP1(t)] (1)

P1(t + 1) = g(t)P0(t)+ [qg(t)+ pḡ(t)]P1(t)+ qḡ(t)P2(t) (2)

Pn(t + 1) = pg(t)Pn−1(t)+ [qg(t)+ pḡ(t)]Pn(t)+ qḡ(t)Pn+1(t). (3)

A car will move in the next timestep if there is at least one empty cell in front of it
(probability

∑
n>1Pn(t)) and if it does not decelerate in the randomization step 3 (probability

q = 1− p). Therefore, the probabilitiesg(t) and ḡ(t) are given by

g(t) = q
∑
n>1

Pn(t) = q[1− P0(t)]

ḡ(t) = P0(t)+ p
∑
n>1

Pn(t) = p + qP0(t) (4)

where we have used the normalization∑
n>0

Pn(t) = 1. (5)
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The probabilities can also be related to the densityc = N/L of cars. Since each car which
has the distancen to the next one in front of it ‘occupies’n+1 sites we have the following
relation: ∑

n>0

(n+ 1)Pn(t) = 1

c
. (6)

Here we are mainly interested in the stationary state (t → ∞) with limt→∞ Pn(t) = Pn.
In order to determine the probabilities in the stationary state we introduce the generating
function

P(z) =
∞∑
n=0

Pnz
n+1. (7)

After multiplying the corresponding equation in (1)–(3) byzn+1 and summing over all
equations one finds an explicit expression for the generating function,

P(z) = q(ḡ + gz)zP0

qḡ − pgz . (8)

The normalization condition (5) and the density relation (6) imply that the generating
function has to satisfy

P(1) = 1 and P ′(1) = 1

c
(9)

whereP ′(z) denotes the derivative ofP(z).
Using (8) it is easy to obtain the probabilities explicitly:

P0 = 2qc − 1+√1− 4qc(1− c)
2qc

Pn = P0

p

(
pg

qḡ

)n
= P0

p

(
p(1− P0)

P0+ p(1− P0)

)n
(n > 1) (10)

where we have already used (6) to expressP0 through the densityc of cars.
To obtain the fundamental diagram we have to calculate the flux. It is given by

f (c, p) = cg = qc(1− P0) from which one recovers the exact result [2, 3]

f (c, p) = 1−√1− 4qc(1− c)
2

. (11)

In [2, 3] we expressed the exact solution in terms of the pair probabilitiesP(nj , nj+1) to
find two neighbouring sitesj and j + 1 in the state(nj , nj+1). Herenj = 0 denotes an
empty site andnj = 1 a site occupied by a car (with velocity 1)†. In [2, 3] it was shown
that probabilities for larger clusters factorize, i.e.P(n1, . . . , nL) =

∏L−1
j=1 P(nj , nj+1). The

2-cluster probabilities are related to thePn through

P(1, 1) = cP0

P 2(1, 0) = c(1− c)P1 (12)

P(0, 0) = (1− c)Pn+1

Pn
(n > 1).

The factorsc and 1− c appear due to the different normalization of thePn andP(nj , nj+1).
The Pn are normalized by the number of cars whereas theP(nj , nj+1) are normalized by
the number of sites.

† Cars with velocity 0 do not exist after the acceleration step.
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The fact that the COMF yields the exact result is not unexpected since the COMF takes
into account all relevent correlations for the casevmax = 1 where only nearest-neighbour
correlations are non-trivial [2, 3]. Although the model forvmax > 1 is know to exhibit a
different behaviour [3] the COMF might yield good results in this case because it takes into
longer-ranged correlations. In the following we will investigate the casevmax= 2.

COMF for vmax = 2

The casevmax= 2 can be treated in a similar way asvmax= 1. However, it is now necessary
to introduce two different functionsPn(t) and Bn(t) describing the probabilities to find
exactlyn empty sites in front of a car with velocity 1 and 2, respectively. Proceeding as in
the casevmax= 1 we find the evolution equations. For the stationary state the probabilities
obey the equations

P0 = g0[P0+ B0] (13)

P1 = g1[P0+ B0] + pg0[P1+ B1] (14)

P2 = g2[P0+ B0] + pg1[P1+ B1] + pg0P2 (15)

P3 = pg2[P1+ B1] + pg1P2+ pg0P3 (16)

Pn = pg2Pn−2+ pg1Pn−1+ pg0Pn (n > 4) (17)

and

B0 = qg0[P1+ B1+ B2] (18)

B1 = qg1[P1+ B1+ B2] + g0[qP2+ pB2+ qB3] (19)

B2 = qg2[P1+ B1+ B2] + g1[qP2+ pB2+ qB3] + g0[qP3+ pB3+ qB4] (20)

Bn = g2[qPn−1+ pBn−1+ qBn] + g1[qPn + pBn + qBn+1]

+g0[qPn+1+ pBn+1+ qBn+2] (n > 3). (21)

The probabilitiesgα that a car movesα sites (α = 0, 1, 2) in the next timestep are given by

g0 = P0+ B0+ p
∑
n>1

Pn + pB1

g1 = q
∑
n>1

Pn + qB1+ p
∑
n>2

Bn (22)

g2 = q
∑
n>2

Bn.

We just mention here that it is possible to derive the identitiesg0 =
∑

n>0Pn and
g1+ g2 =

∑
n>0Bn from (22) and (13)–(21). Using the normalization∑
n>0

[Pn + Bn] = 1 (23)

we haveg0+ g1+ g2 = 1.
The conservation of density leads to the constraint∑

n>0

(n+ 1)[Pn + Bn] = 1

c
. (24)

We introduce the generating functions

P(z) =
∞∑
n=0

Pnz
n+1 (25)
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B(z) =
∞∑
n=0

Bnz
n+1. (26)

These functions have to satisfyP(1)+B(1) = 1 andP ′(1)+B ′(1) = 1/c due to (23) and
(24), respectively.

After multiplication withzn+1 and summation over all the equations (13)–(21) one finds

P(z) = g(z)

1− pg(z)[(qP0+ B0)z + pB1z
2] (27)

B(z) = zg(z)

z2− (q + pz)g(z)[qP (z)− qB0− (qP0+ pB0+ qB1)z + (q − p)B1z
2] (28)

where we have introduced the functiong(z) = g0 + g1z + g2z
2. Note that this function

satisfiesg(1) = 1 andg′(1) = (1/c)f (c, p) is just the average velocity of the vehicles.
If one expresses the sums appearing in (22) byP(z = 1) andB(z = 1) one obtains the

following relations:

B1 = q

p
g0− 1

p
(B0+ qP0) (29)

g1 = p(1− P0)+
(
q − p

q

)
B0+

(
1− p

q

)
B1 (30)

g2 = q(1− P0)− (1+ q)B0− B1. (31)

With these relations the normalization conditionP(1)+B(1) = 1 is also satisfied. Now we
can express the generating function completely in terms of the two probabilitiesP0 andB0

only, sinceg0 = P0/(P0+ B0) from (13).

Figure 1. Fundamental diagram forvmax = 2 andp = 0.1. The comparison of the COMF
result (full curve) with results from computer simulations(•) shows an excellent agreement.

At this point it is surprising that we are still left with two unknownsP0 and B0

since we only have one free parameter, the densityc. In the following we determine a
relation betweenP0 andB0 from analytic properties ofB(z). Thus the generating functions
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Figure 2. Fundamental diagram forvmax = 2 andp = 1
2 . The full curve is the COMF result.

For comparison the results from computer simulations(•) and then-cluster approximation for
n = 1, 2, 3 (broken curves) are also shown.

depend only on one free parameter, e.g.P0, which then can be related to the density via
P ′(1)+ B ′(1) = 1/c.

The denominator ofB(z) can be rewritten asz2−(q+pz)g(z) = pg2(1−z)(z−s+)(z−
s−), wheres± are given by

s± = 1

a

[
1±

√
1+ qg0

pg2
a2

]
with a = 2pg2/(g0 + qg1). Thus the denominator ofB(z) has three zeros,z = 1 and
z = s±. Two of these are located in the unit circle since|s−| 6 1. These zeros have to be
cancelled by corresponding zeros of the numerator sinceB(z) has to be analytic in the unit
circle (otherwise one would not have limn→∞ Bn = 0). It is easy to see that the numerator
indeed has a zero atz = 1. Demanding that it also has a zero atz = s− we find the missing
relation betweenP0 andB0,

qP (s−)− qB0− (qP0+ pB0+ qB1)s− + (q − p)B1s
2
− = 0. (32)

Owing to (24) we can regard the generating functionsP(z) and B(z) as functions of
the densityc only. The fundamental diagram can then be obtained using the following
expression for the flux:

f (c, p) = c[g1+ 2g2]. (33)

Results are shown in figure 1 forp = 0.1 and figure 2 forp = 1
2. For p = 0.1 we find an

excellent agreement of the two curves. Forp = 0.5 we still find an excellent agreement for
small densities (c < 0.2) and high densities (c > 0.5). Only near the maximum are there
deviations. For comparision we have also included in figure 2 results from the site-oriented
approach, i.e. then-cluster approximation. The COMF result is much better than the 2-
cluster result and comparable to the 3-cluster approximation. It seems that the COMF tends
to overestimate the flux whereas then-cluster approximation yields a lower bound for the
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flux [3]. The result forp = 0.1 shows, however, that the COMF result is not systematically
larger than the simulation results.

For small densities the average distance between the cars is large. Therefore correlations
between cars and neighbouring empty sites are much more important than those between
two cars. These correlations are better described by the COMF which is the reason why
the COMF is superior to the cluster approach for small cluster sizes in this regime.

The agreement between simulations and the COMF result is very good up to densities
close to the critical densityccrit ≈ 0.19 for p = 1

2 [6]. Here correlations between distances
become important. It is to be expected that a combination of the cluster approach and the
COMF will give a much better agreement of the calculated fundamental diagram and the
simulations in the region near the critical point and the flux maximum.

We have also applied the COMF to generalizations of some modified models [7–9]. The
models discussed in [7, 8] have different modified acceleration rules which forvmax = 1
break the ‘particle–hole’ symmetry, i.e. the fundamental diagrams are no longer symmetric
with respect toc = 0.5. It turns out that the COMF gives good agreement with simulations,
but is no longer exact (even forvmax = 1). A full account of these results will be given
elsewhere.

Part of this work has been performed within the research program of the
Sonderforschungsbereich 341 (Köln-Aachen-J̈ulich). We like to thank N Rajewsky and
L Santen for helpful discussions.
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